1.2 Series in Pandas
Adding NaN values in a Series:
You can specify missing or empty value
using np.NaN or None
S = pd.Series([6.5,np.NaN,2.34])
import pandas as pd
import numpy as np
S=pd.Series([6.5,np.NaN, 2.34])
print(S)
S=pd.Series([6.5,None, 2.34])
print(S)
Specify Index in Series:
S = pd.Series(data=data_values,
index=index_values)
1. Create a Series with month name as index and no. of days in month as data of series.
import pandas as pd
I=['Jan','Feb','Mar','Apr']
D=[31,28,31,30]
S=pd.Series(D,I) #by default first
argument is data and 2nd is Index
print(S)
S=pd.Series(I,D) #by default first
argument is data and 2nd is Index
print(S)
S=pd.Series(index=I,data=D)
print(S)
S=pd.Series(data=D,index=I)
print(S)
1.
A List namely section that store the
section names of class 12 and another list contri store the contribution made
by students section wise. Create a Series for these data.
import pandas as pd
section=['A','B','C','D']
contri=[6700,5600,5000,5200]
S=pd.Series(data=contri,index=section)
print(S)
Specify data type in Series
S = pd.Series(data=None, index=None,
dtype=None)
import pandas as pd
import numpy as np
months=['Jan','Feb','Mar','Apr']
days=[31,28,31,30]
S=pd.Series(data=days,index=months,dtype=np.float64)
print(S)
No comments:
Post a Comment