Saturday, 4 December 2021

Agents in Artificial Intelligence

1.     What is the function of an AI “Agent”?

A).   Mapping of goal sequence to an action

B).   Work without the direct interference of the people

C).   Mapping of precept sequence to an action

D).   Mapping of environment sequence to an action

 

2.     Which of the following is not a type of AI agent?

A).   Learning agent

B).   Goal-based agent

C).   Simple reflex agent

D).   Unity-based agent

 

3.     Which of the following is not the commonly used programming language for AI?

A).   Perl

B).   Java

C).   PROLOG

D).   LISP

 

4.     What is the name of the AI system developed by Daniel Bobrow?

A).   program known as BACON

B).   system known as STUDENT

C).   program known as SHRDLU

D).   system known as SIMD

 

5.     What is the function of the system Student?

A).   program that can read algebra word problems only

B).   system which can solve algebra word problems but not read

C).   system which can read and solve algebra word problems

D).   None of the mentioned

 

6.     Which of the following is not an application of artificial intelligence?

A).   Face recognition system

B).   Chatbots

C).   LIDAR

D).   DBMS

 

7.     Which of the following machine requires input from the humans but can interpret the outputs themselves?

A).   Actuators

B).   Sensor

C).   Agents

D).   AI system

 

8.     _________ number of informed search method are there in AI.

A).   4

B).   3

C).   2

D).   1

 

9.     The total number of proposition symbols in AI are ________

A).   3 proposition symbols

B).   1 proposition symbols

C).   2 proposition symbols

D).   No proposition symbols

 

10.  Which of the following can improve the performance of an AI agent?

A).   Perceiving

B).   Learning

C).   Observing

D).   All of the above

 

11.  The composition for agents are _______

A).   Program only

B).   Architecture only

C).   Both Program and Architecture

D).   None of the mentioned

 

12.  The total number of logical symbols in AI are ____________

A).   There are 3 logical symbols

B).   There are 5 logical symbols

C).   Number of logical symbols are based on the input

D).   Logical symbols are not used

 

13.  The total number of recognition in artificial intelligence are _______________

A).   3

B).   4

C).   2

D).   1

 

14.  On which Artificial Neural Network is based on which type of approach?

A).   Cognitive approach

B).   Applied approach

C).   Weak approach

D).   Strong approach

 

15.  Which of the following are the approaches to Artificial Intelligence?

A).   Applied approach

B).   Strong approach

C).   Weak approach

D).   All of the mentioned

 

16.  Face Recognition system is based on which type of approach?

A).   Weak approach

B).   Applied approach

C).   Cognitive approach

D).   Strong approach

 

17.  Which of the following is an advantage of artificial intelligence?

A).   Reduces the time taken to solve the problem

B).   Helps in providing security

C).   Have the ability to think hence makes the work easier

D).   All of the above

 

18.  On which of the following approach completely automated chess engine (Learn from previous games) is based?

A).   Cognitive approach

B).   Applied approach

C).   Weak approach

D).   Strong approach

 

19.  On which of the following approach A basic line following robot is based?

A).   Applied approach

B).   Weak approach

C).   Strong approach

D).   Cognitive approach

 

20.  Which of the following is an example of artificial intelligent agent/agents?

A).   Autonomous Spacecraft

B).   Human

C).   Robot

D).   All of the mentioned

 

21.   The action of task environment is ____________

A).   Solution

B).   Observation

C).   Problem

D).   Agent



Friday, 3 December 2021

Introduction to AI

 

1.      Which of the following is the branch of AI?

A).    Machine Learning

B).    Cyber forensics

C).    Full-Stack Developer

D).   Network Design

 

2.      Based on which parameter AI is categorized?

A).    Based on functionally only

B).    Based on capabilities only

C).    Based on capabilities and functionally

D).   It is not categorized

 

3.       Which of the following is a component of AI?

A).    Learning

B).    Training

C).    Designing

D).   Puzzling

 

4.       _____ is the goal of AI.

A).    To solve artificial problems

B).    To extract scientific causes

C).    To explain various sorts of intelligence

D).   To solve real-world problems

 

5.       Which of the following is an application of AI?

A).    It helps to exploit vulnerabilities to secure the firm

B).    Language understanding and problem-solving (Text analytics and NLP)

C).    Easy to create a website

D).   It helps to deploy applications on the cloud

Sunday, 28 November 2021

Function and Relation MCQ of Discrete Mathematics

 

1.     The function f : A → B defined by f(x) = 4x + 7, x R is

A).   one-one

B).   Many-one

C).   Odd

D).   Even

 

2.     The smallest integer function f(x) = [x] is

A).   One-one

B).   Many-one

C).   Both (a) & (b)

D).   None of these

 

3.     The function f : R → R defined by f(x) = 3 – 4x is

A).   Onto

B).   Not onto

C).   None one-one

D).   None of these

 

4.     The number of bijective functions from set A to itself when A contains 106 elements is

A).   106

B).   (106)2

C).   106!

D).   2106

 

5.     If f : R → R and g : R → R defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the value of x for which f(g(x)) = 25 is

A).   ±1

B).   ±2

C).   ±3

D).   ±4

 

6.     If f : R → R, g : R → R and h : R → R are such that f(x) = x^2, g(x) = tan x and h(x) = log x, then the value of (go(foh)) (x), if x = 1 will be

A).   0

B).   1

C).   -1

D).   π

 

7.     The number of binary operations that can be defined on a set of 2 elements is

A).   8

B).   4

C).   16

D).   64

 

8.     The maximum number of equivalence relations on the set A = {1, 2, 3} are

A).   1

B).   2

C).   3

D).   5

 

9.     Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is

A).   reflexive but not symmetric

B).   reflexive but not transitive

C).   symmetric and transitive

D).   neither symmetric, nor transitive

 

10.  Let us define a relation R in R as aRb if a ≥ b. Then R is

A).   an equivalence relation

B).   reflexive, transitive but not symmetric

C).   symmetric, transitive but not reflexive

D).   neither transitive nor reflexive but symmetric

 

11.  Let f : R → R be defind by f(x) = 1/x x R. Then f is

A).   one-one

B).   onto

C).   bijective

D).   f is not defined

 

12.  Which of the following functions from Z into Z are bijective?

A).   f(x) = x3

B).   f(x) = x + 2

C).   f(x) = 2x + 1

D).   f(x) = x2 + 1

 

13.  Let S = {1, 2, 3, 4, 5} and let A = S × S. Define the relation R on A as follows:

(a, b) R (c, d) iff ad = cb. Then, R is

A).   reflexive only

B).   Symmetric only

C).   Transitive only

D).   Equivalence relation

 

14.  Total number of equivalence relations defined in the set S = {a, b, c} is

A).   5

B).   3!

C).   23

D).   33

 

15.  Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defined by y = 2x4, is

A).   one-one onto

B).   one-one into

C).   many-one onto

D).   many-one into

 

16.  Let g(x) = x^2 – 4x – 5, then

A).   g is one-one on R

B).   g is not one-one on R

C).   g is bijective on R

D).   None of these

 

17.  Let A = R – {3}, B = R – {1}. Let f : A → B be defined by f(x)=x−2/x−3. Then,

A).   f is bijective

B).   f is one-one but not onto

C).   f is onto but not one-one

D).   None of these

 

18.  The mapping f : N → N is given by f(n) = 1 + n^2, n N when N is the set of natural numbers is

A).   one-one and onto

B).   onto but not one-one

C).   one-one but not onto

D).   neither one-one nor onto

 

19.  The function f : R → R given by f(x) = x^3 – 1 is

A).   a one-one function

B).   an onto function

C).   a bijection

D).   neither one-one nor onto

 

20.  If N be the set of all-natural numbers, consider f : N → N such that f(x) = 2x, x N, then f is

A).   one-one onto

B).   one-one into

C).   many-one onto

D).   None of these

 

21.  Let f : R → R be a function defined by f(x) = x^3 + 4, then f is

A).   injective

B).   surjective

C).   bijective

D).   none of these

 

22.  If * is a binary operation on set of integers I defined by a * b = 3a + 4b – 2, then find the value of 4 * 5.

A).   35

B).   30

C).   25

D).   29

 

23.  Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b N. Find the value of 22 * 4.

A).   1

B).   2

C).   3

D).   4

 

24.  Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b Q. Find 2 * 1/3

A).   20/3

B).   4

C).   18

D).   16/3